Yoshihisa Kurasawa [a],* Ayaka Kawase [a], Jun Takizawa [a], Yuka Maesaki [a], Eisuke Kaji [a], Yoshihisa Okamoto [b], and Ho Sik Kim [c]
[a] School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108-8641, Japan [b] Center for Natural Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228-8555, Japan [c] Department of Chemistry, Catholic University of Taegu, Gyongsan 712-702, Korea Received June 28, 2004

Abstract

The 3-amino-1-methylpyridazino[3,4-b]quinoxalin-4(1H)-one 6 and N-(1,4-dihydro-1-methyl-4-oxopyridazino[3,4b]quinoxalin-3-yl)carbamates $\mathbf{1 7 a}, \mathbf{b}$ were synthesized from the 1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxa-line-3-carboxylate 1b via the 1,5-dihydro-4-hydroxy-1-methylpyridazino[3,4-b]quinoxaline-3-carbohydrazide 13b and then 1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxaline-3-carboxazide 8. Heating of compound 13b and arylaldehydes afforded the 1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxaline-3-carbo(2-arylmethylene)hydrazides 14a-d.

Introduction.
In previous papers [1-6], we reported the synthesis of quinolone analogues such as the 1 -alkyl-1,4-dihydropyri-dazino[3,4-b]quinoxalines 1-5 (Chart 1) as candidates of antimicrobial agents. Compounds $\mathbf{1}$ and $\mathbf{2}$ having a carboxyl or carboxylate group at 3-position showed weak antibacterial activities [1,2], but the 3-alkyl 3, 3-H 4, and 3 -halogeno 5 homologues possessing no carboxyl or carboxylate group at 3 -position exhibited good antibacterial and antifungal activities [3-6]. These results suggest that 1-alkyl-1,4-dihydropyridazino[3,4-b]quinoxalin-4(1H)ones having no carboxyl or carboxylate group at 3-position would represent some of antimicrobial activities. Accordingly, we further planned the synthesis of the

Chart 1

$\mathrm{R}_{1}=\mathrm{H}, \mathrm{Cl} ; \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$
1a: $\mathrm{R}_{3}=\mathrm{H} ; \mathbf{1 b}: \mathrm{R}_{3}=\mathrm{C}_{2} \mathrm{H}_{5}$

$\mathrm{R}_{1}=\mathrm{H}, \mathrm{Cl} ; \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$
3a: $\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathbf{3 b}: \mathrm{R}_{3}=\mathrm{C}_{2} \mathrm{H}_{5}$ 3c: $\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{CF}_{3}$

$\mathrm{R}_{1}=\mathrm{Cl}, \mathrm{H}$
5a: $\mathrm{R}_{2}=\mathrm{Cl}$
5b: $\mathrm{R}_{2}=\mathrm{Br}$

2a: $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{n}=1$
2b: $\mathrm{R}=\mathrm{H}, \mathrm{n}=3$

4: $\mathrm{R}=\mathrm{Cl}, \mathrm{H}$

6

3-amino-1-methylpyridazino[3,4-b]quinoxalin-4(1H)-one 6 (Chart 1) in order to search for potent compounds.
Synthetic Route.
There are at least two methods I and II for the synthesis of the 3 -amino derivative $\mathbf{6}$ as shown in Scheme 1. The route I method was found to be more convenient than the route II method. Namely, if the 3 -carbohydrazide 7 is successfully synthesized from the 3 -carboxylate $\mathbf{1 b}$, the 3 -amino derivative 6 would be easily produced via the Curtius rearrangement of the 3 -carboxazide 8 . In fact, the reaction of the 3 carboxylate $\mathbf{1 b}$ with a large amount of hydrazine hydrate (13 -fold molar amount) gave the 3 -carbohydrazide 13b [710] instead of the 3-carbohydrazide 7 (Scheme 2), although the use of 2 - or 3 -fold molar amount of hydrazine hydrate recovered the starting material $\mathbf{1 b}$. Successively, the 3 -carbohydrazide 13b was converted into the 3 -amino derivative 6 via the carboxazide 8 (Scheme 5). In the route II method, however, the yield of the 3 -nitro derivative $\mathbf{1 0}$ from compound $9[5,6]$ was very low [11]. Moreover, the direct amination of compound 9 with hydroxylamine O-sulfonic acid to the 3 -amino derivative $\mathbf{1 1}$ was unsuccessful.

Synthesis of the 3-Amino Derivative 6 .

The reaction of compound $\mathbf{1 b}$ with 13 -fold molar amount of hydrazine hydrate gave the 1,5 -dihydro-4-hydroxy-1-methylpyridazino[3,4-b]quinoxaline-3-carbohydrazide 13b presumably via compounds 12a/12b or 7/13a, wherein the 4 -keto group of compound $\mathbf{1 b}$ or $\mathbf{7}$ was reduced with hydrazine (Scheme 2). Oxidation of the 1,5-dihydro-4-hydroxy moiety in compound 13b to the $1,4-$ dihydro-4-oxo moiety in compounds 14a-d was found to take place easily by autoxidation. Namely, reflux of compound 13b and arylaldehydes in N, N-dimethylformamide with stirring for 2 hours provided the 7 -chloro-1-methyl-4-oxopyridazino[3,4-b]quinoxaline-3-carbo(2-arylmethylene)hydrazides $\mathbf{1 4 a - d}$, while heating of compound 13b in dimethyl sulfoxide with stirring for 2 hours afforded the 2 H -pyrazolo[3 ',4':5,6]pyridazino[3,4-b]quinoxalin-3(5H)one 15 presumably via compound 7 (Scheme 3).

Scheme 1

Scheme 2

Scheme 3

However, when the mixture of compound 13b and pyri-dine-4-carbaldehyde in N, N-dimethylformamide was refluxed for 45 minutes without stirring, compound 14d and the intermediate 16 were simultaneously obtained (Scheme 4, Table 1). The nmr spectral data in Table 1 are explained later.

The reaction of compound $\mathbf{1 3 b}$ with nitrous acid provided the 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxa-line-3-carboxazide 8 [12], whose rearrangement took place easily on heating in water/triethylamine $/ \mathrm{N}, \mathrm{N}$ dimethylformamide [13] to afford the 3-amino derivative 6. On the other hand, reflux of compound $\mathbf{8}$ in tri-

Scheme 4

13b

45 minutes [a]

1,5-Dihydroquinoxaline Form (32\%)

1,4-Dihydroquinoxaline Form (68\%)
[a] Because of short time reflux, product was a mixture of compounds 14 d and 16 .

Table 1
Aromatic Proton Signals of Quinoxaline Ring for Compounds 13b, 14a-d, and 16 [a]

Chemical Shifts (δ)
Compound 1,4-Dihydroquinoxaline Form 1,5-Dihydroquinoxaline Form 6-H, 8-H, 9-H

6-H, 8-H, 9-H
6.52-6.36
6.39-6.25
[a] Measured in deuteriotrifluoroacetic acid. [b] Mixture of 14 d and 16.
ethylamine/alcohols [13] gave the carbamate derivatives 17a,b (Scheme 5).

The structural assignments of new compounds were based on analytical and spectral data. Compounds 6, 13b, 14a-d, and 15 were insoluble in deuteriodimethyl sulfoxide, and the nmr spectra of these compounds were measured in deuteriotrifluoroacetic acid. Accordingly, these compounds were assigned as the deuterized structure including ND and/or OD group. On the other hand, the 6$\mathrm{H}, 8-\mathrm{H}$, and $9-\mathrm{H}$ proton signals of compound $\mathbf{1 3} \mathbf{b}$ ($\delta 6.52-$ 6.36) with the 1,5 -dihydro form were easily distinguished from those of compounds $\mathbf{1 4 a}-\mathbf{d}(\delta 8.26-7.82)$ with the 1,4dihydro form (Table 1), as reported by us in previous papers $[2,4,6,12]$. Namely, the aromatic proton signals of

Scheme 5

13b

17a,b
a: $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
b: $\mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$

in ROH
$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$

8

6

Table 2
Carbon Chemical Shifts (δ) for Quinolone Analogues 6 and 17b [a, b]

Carbon	Compound 6	Compound 17b
C_{3}	127.2	123.8
$\mathrm{C}_{4}=\mathrm{O}$	163.4	162.0
C_{4}	139.2	142.7
$\mathrm{C}_{5 \mathrm{a}}$	144.3	146.1
C_{6}	124.3	122.7
C_{7}	139.5	136.5
C_{8}	138.3	138.8
C_{9}	130.2	13.6
$\mathrm{C}_{9 \mathrm{a}}$	145.8	147.2
$\mathrm{C}_{10 \mathrm{a}}$	144.8	144.7
NCH_{3}	41.2	41.3
NHCO		154.7

[a] Measured in deuteriotrifluoroacetic acid. [b] Assigned by HMQC and HMBC spectra.
the 1,5 -dihydropyridazino $[3,4-b$]quinoxalines are observed at a higher magnetic field than those of the 1,4-dihydropyridazino[3,4-b]quinoxalines [2,4,6]. In a mixture of compound 16 (1,5-dihydro form) and compound $\mathbf{1 4 d}$ (1,4-dihydro form), two pairs of the $6-\mathrm{H}, 8-\mathrm{H}$, and $9-\mathrm{H}$ proton signals were observed at $\delta 6.39-6.26$ (due to the 1,5 -dihydro compound) and at δ 8.08-7.82 (due to the 1,4dihydro compound). Thus, the signals of compound 16 (δ 6.39-6.26) in the above mixture were easily specified by nmr spectral data. The ring carbon signals of the quinolone analogues $\mathbf{6}$ and 17b were also assigned by HMQC and HMBC spectral data (Table 2).

The screening of novel compounds synthesized in the present investigation is in progress, and the data will be reported elsewhere.

EXPERIMENTAL

All melting points were determined on a Yazawa micro melting point BY-2 apparatus and are uncorrected. The ir spectra (potassium bromide) were recorded with a JASCO FT/IR-200 spectrophotometer. The nmr spectra were measured with a Varian XL- 400 spectrometer at 400 MHz . The chemical shifts are given in the δ scale. The mass spectra were determined with a JEOL JMS-01S spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B instrument.
7-Chloro-1,5-dihydro-4-hydroxy-1-methylpyridazino[3,4b]quinoxaline-3-carbohydrazide (13b).

A suspension of compound $\mathbf{1 b}(5 \mathrm{~g})$ and hydrazine hydrate (100% purity, 10 g) in dioxane (100 ml) was refluxed for 3 hours
to precipitate red needles of compound 13b, which were collected by filtration and then washed with ethanol to give an analytically pure sample ($4.59 \mathrm{~g}, 96 \%$), mp $280-281^{\circ}$; ir: $\mathrm{v} \mathrm{cm}^{-1}$ 3400, 3240, 1665, 1610; ms: m/z $306\left(\mathrm{M}^{+}\right), 308\left(\mathrm{M}^{+}+2\right), 304$ $\left[\left(\mathrm{M}^{+}\right)-2\left(\mathrm{H}_{2}\right)\right] ; \mathrm{nmr}$ (deuteriotrifluoroacetic acid): $\delta 6.52$ (dd, J $\left.=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 6.48\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 6.36(\mathrm{~d}$, $\left.\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{6} \mathrm{O}_{2}$: C, 46.99; H, 3.61; N, 27.40. Found: C, 46.95; H, 3.81; N, 27.33.

7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxa-line-3-carbo[2-(4-trifluoromethylbenzylidene)]hydrazide (14a).

A solution of compound 13b ($500 \mathrm{mg}, 1.63 \mathrm{mmole}$) and 4-trifluoromethylbenzaldehyde ($426 \mathrm{mg}, 2.45 \mathrm{mmoles}$) in N, N dimethylformamide (30 ml) was refluxed with stirring for 2 hours. The solution was allowed to stand overnight, precipitating yellow crystals of compound $\mathbf{1 4} \mathbf{a}$, which were collected by filtration and then washed with ethanol to give an analytically pure sample ($450 \mathrm{mg}, 60 \%$), mp above 310°; ir: $\mathrm{v} \mathrm{cm}{ }^{-1} 1690$, $\mathrm{ms}: \mathrm{m} / \mathrm{z}$ $460\left(\mathrm{M}^{+}\right), 462\left(\mathrm{M}^{+}+2\right) ; \mathrm{nmr}$ (deuteriotrifluoroacetic acid): δ $8.34(\mathrm{~s}, 1 \mathrm{H}$, hydrazone CH$), 8.18\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.14$ (d, J = $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}$), 7.96 (dd, J = 2.0, $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}$), 7.78 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzene ring CH), $7.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2 H , benzene ring CH), $4.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, $52.13 ; \mathrm{H}, 2.62 ; \mathrm{N}$, 18.24. Found: C, $52.16 ; \mathrm{H}, 2.83 ; \mathrm{N}, 18.16$.

7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]-quinoxaline-3-carbo[2-(3-trifluoromethylbenzylidene)]hydrazide (14b).

A solution of compound 13b ($500 \mathrm{mg}, 1.63 \mathrm{mmole}$) and 3-trifluoromethylbenzaldehyde ($426 \mathrm{mg}, 2.45 \mathrm{mmoles}$) in $N, N-$ dimethylformamide (30 ml) was refluxed with stirring for 2 hours. The solution was allowed to stand overnight, precipitating yellow crystals of compound $\mathbf{1 4 b}$, which were collected by filtration and then washed with ethanol to give an analytically pure sample ($470 \mathrm{mg}, 63 \%$), mp above 310°; ir: $\mathrm{v} \mathrm{cm}^{-1} 1690$, $\mathrm{ms}: \mathrm{m} / \mathrm{z}$ $460\left(\mathrm{M}^{+}\right), 462\left(\mathrm{M}^{+}+2\right) ; \mathrm{nmr}$ (deuteriotrifluoroacetic acid): δ $8.25\left(\mathrm{~s}, 1 \mathrm{H}\right.$, hydrazone CH), $8.04\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.03$ (d, J = $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}$), $7.84\left(\mathrm{dd}, \mathrm{J}=2.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right.$), $7.78\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzene $\left.\mathrm{C}_{2}-\mathrm{H}\right), 7.78\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, benzene C_{6} H), $7.51\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, benzene $\mathrm{C}_{4}-\mathrm{H}$), $7.33(\mathrm{dd}, \mathrm{J}=8.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}$, benzene $\mathrm{C}_{5}-\mathrm{H}$), $4.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, $52.13 ; \mathrm{H}, 2.62 ; \mathrm{N}$, 18.24. Found: C, $52.17 ; \mathrm{H}, 2.80 ; \mathrm{N}, 18.21$.

7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxa-line-3-carbo[2-(2-pyridylmethylene)]hydrazide (14c).

A solution of compound $\mathbf{1 3 b}(1.5 \mathrm{~g}, 4.89$ mmoles) and pyridine-2-carbaldehyde ($0.79 \mathrm{~g}, 7.34$ mmoles) in N, N-dimethylformamide $(80 \mathrm{ml})$ was refluxed with stirring for 2 hours. Evaporation of the solvent in vacuo gave yellow crystals of compound $\mathbf{1 4} \mathbf{c}$, which were collected by filtration. Recrystallization from N, N-dimethylformamide/ethanol afforded yellow needles ($1.38 \mathrm{~g}, 72 \%$), mp 297-298 ${ }^{\circ}$; ir: $\mathrm{vcm}^{-1} 3230,1695,1640, \mathrm{~ms}: \mathrm{m} / \mathrm{z} 393\left(\mathrm{M}^{+}\right), 395\left(\mathrm{M}^{+}\right.$ +2); nmr (deuteriotrifluoroacetic acid): $\delta 8.57$ (dd, $\mathrm{J}=7.0,1.2 \mathrm{~Hz}$, 1 H , pyridine $\mathrm{C}_{6}-\mathrm{H}$), $8.48(\mathrm{~s}, 1 \mathrm{H}$, hydrazone CH$), 8.47$ (ddd, $\mathrm{J}=$ $7.0,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.09(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C}_{3}-\mathrm{H}$), $8.08\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.01(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{9}-\mathrm{H}\right), 7.88\left(\mathrm{dd}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, pyridine $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.82(\mathrm{dd}, \mathrm{J}=$ $\left.2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 4.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{7} \mathrm{O}_{2}$: C, 54.90; H, 3.07; N, 24.90. Found: C, 54.73; H, 3.30; N, 24.60.

7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinoxa-line-3-carbo[2-(4-pyridylmethylene)]hydrazide (14d).

A solution of compound $\mathbf{1 3 b}(1.5 \mathrm{~g}, 4.89$ mmoles $)$ and pyri-dine-4-carbaldehyde ($0.79 \mathrm{~g}, 7.34$ mmoles) in N, N-dimethylformamide (80 ml) was refluxed with stirring for 2 hours. Evaporation of the solvent in vacuo gave yellow crystals of compound 14d, which were collected by filtration. Recrystallization from N, N-dimethylformamide/ethanol provided yellow needles ($0.96 \mathrm{~g}, 50 \%$) , mp above 320°; ir: $\mathrm{v} \mathrm{cm}^{-1} 3240,1690,1620$, ms: m/z $393\left(\mathrm{M}^{+}\right), 395\left(\mathrm{M}^{+}+2\right) ; \mathrm{nmr}$ (deuteriotrifluoroacetic acid): δ $8.72\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine $\mathrm{C}_{2}-\mathrm{H}$ and $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.59(\mathrm{~s}, 1 \mathrm{H}$, hydrazone CH), $8.48\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{C}_{5^{-}}$ H), $8.26\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.08(\mathrm{dd}, \mathrm{J}=2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{8}-\mathrm{H}\right), 8.00\left(\mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 4.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{7} \mathrm{O}_{2}$: C, $54.90 ; \mathrm{H}, 3.07 ; \mathrm{N}, 24.90$. Found: C, 54.66; H, 3.34; N, 24.91.

9-Chloro-5-methyl-2H-pyrazolo[3',4':5,6]pyridazino[3,4-b]-quinoxalin- $3(5 H)$-one (15).

A solution of compound $\mathbf{1 3 b}(0.5 \mathrm{~g})$ in dimethyl sulfoxide (10 $\mathrm{ml})$ was heated at $140-160^{\circ}$ with stirring for 2 hours. The solution was allowed to stand overnight to precipitate purple needles of compound $\mathbf{1 5}$, which were collected by filtration and then washed with ethanol to afford an analytically pure sample (0.27 $\mathrm{g}, 54 \%$), mp above 310°; ir: $\mathrm{v} \mathrm{cm}^{-1} 1700$, ms: m/z $286\left(\mathrm{M}^{+}\right), 288$ $\left(\mathrm{M}^{+}+2\right) ; \mathrm{nmr}$ (deuteriotrifluoroacetic acid): $\delta 8.10(\mathrm{~d}, \mathrm{~J}=2.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{10}-\mathrm{H}\right), 8.06\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.84(\mathrm{dd}, \mathrm{J}=2.0$, $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 4.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{6} \mathrm{O}: \mathrm{C}, 50.28 ; \mathrm{H}, 2.46 ; \mathrm{N}, 29.32$. Found: C, 50.15; H, 2.65; N, 29.04.

7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]quinox-alin-3-carboxazide (8).
(A) Preparation of compound $\mathbf{8}$ for the synthesis of the 3-amino derivative 6: A solution of sodium nitrite ($1.01 \mathrm{~g}, 14.7$ mmoles) in water (20 ml) was added to a suspension of compound $\mathbf{1 3 b}(3 \mathrm{~g}$, 9.79 mmoles $)$ in acetic acid $(30 \mathrm{ml}) /$ water $(20 \mathrm{ml})$. The mixture was stirred at room temperature for 2 hours to precipitate yellow crystals of compound $\mathbf{8}$. After addition of water (200 ml) to the stirred reaction mixture, precipitated compound $\mathbf{8}$ was collected by filtration, washed with ethanol/hexane (1:1), and then dried at room temperature; ir: $v \mathrm{~cm}^{-1} 2143\left(\mathrm{~N}_{3}\right), 1700(\mathrm{C}=\mathrm{O}), 1640$ (C=O); ms: m/z $287\left[\left(\mathrm{M}^{+}\right)-\mathrm{N}_{2}\right], 289\left[\left(\mathrm{M}^{+}+2\right)-\mathrm{N}_{2}\right]$.
(B) Preparation of compound $\mathbf{8}$ for the synthesis of the 3-carbamate derivatives $\mathbf{1 7 a} \mathbf{a} \mathbf{b}$: A solution of sodium nitrite $(0.34 \mathrm{~g}$, 4.89 mmoles) in water (10 ml) was added to a suspension of compound $\mathbf{1 3 b}(1 \mathrm{~g}, 3.26 \mathrm{mmoles})$ in acetic acid $(10 \mathrm{ml}) /$ water $(10$ ml). The mixture was stirred at room temperature for 2 hours to precipitate yellow crystals of compound 8 . After addition of water $(100 \mathrm{ml})$ to the stirred reaction mixture, precipitated compound $\mathbf{8}$ was collected by filtration, washed with ethanol/hexane (1:1), and then dried at room temperature.

3-Amino-7-chloro-1-methylpyridazino[3,4-b]quinoxalin-4(1H)one (6).

A solution of the above 3-caboxazide derivative $\mathbf{8}$ in water (3 $\mathrm{ml}) /$ triethylamine $(0.3 \mathrm{ml}) / N, N$-dimethylformamide $(60 \mathrm{ml})$ was refluxed for 2 hours to precipitate blue needles of compound $\mathbf{6}$,
which were collected by filtration and then washed with ethanol to give an analytically pure sample ($1.56 \mathrm{~g}, 61 \%$) , mp above 320°; ir: $\mathrm{v} \mathrm{cm}^{-1} 3415,3330,3220,1662,1630$; ms: m/z $261\left(\mathrm{M}^{+}\right)$, $263\left(\mathrm{M}^{+}+2\right)$; nmr (deuteriotrifluoroacetic acid): $\delta 8.13(\mathrm{~d}, \mathrm{~J}=$ $\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.05\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 7.88(\mathrm{dd}, \mathrm{J}=$ $\left.2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 4.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, $50.49 ; \mathrm{H}, 3.08 ; \mathrm{N}, 26.76$. Found: C, 50.62; H, 3.17; N, 26.58.

Ethyl N-(7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]-quinoxalin-3-yl)carbamate (17a).

A solution of the above 3-carboxazide derivative $\mathbf{8}$ in triethylamine (0.3 ml)/ethanol (50 ml) was refluxed for 2 hours. The solution was allowed to stand overnight to precipitate red needles of compound $\mathbf{1 7 a}$, which were collected by filtration and then washed with ethanol to give an analytically pure sample $(0.37 \mathrm{~g})$. After addition of acetic acid $(0.5 \mathrm{ml})$ to the filtrate, the solvent was evaporated in vacuo to afford red crystals of compound 17a, which were triturated with ethanol and then collected by filtration (0.33 g). Total yield, 0.70 g (64%).

Compound 17a had mp 180-181 ${ }^{\circ}$; ir: $\mathrm{v} \mathrm{cm}^{-1} 3385,1740$, 1725, 1635; ms: m/z $333\left(\mathrm{M}^{+}\right)$, $335\left(\mathrm{M}^{+}+2\right)$; nmr (deuteriodimethyl sulfoxide): $\delta 9.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.38(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.13\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 8.04(\mathrm{dd}, \mathrm{J}=2.0,9.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 4.13\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $1.22\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}_{3}$: C,50.39; H, 3.62; $\mathrm{N}, 20.99$. Found: C, 50.35; H, 3.72; N, 20.77.

Butyl N-(7-Chloro-1,4-dihydro-1-methyl-4-oxopyridazino[3,4-b]-quinoxalin-3-yl)carbamate (17b).

A solution of the above 3-carboxazide derivative $\mathbf{8}$ in triethylamine $(0.3 \mathrm{ml}) /$ butanol $(50 \mathrm{ml})$ was refluxed for 2 hours. The solution was allowed to stand overnight to precipitate red needles of compound $\mathbf{1 7 b}$, which were collected by filtration and then washed with ethanol to give an analytically pure sample $(0.38 \mathrm{~g})$. After addition of acetic acid $(0.5 \mathrm{ml})$ to the filtrate, the solvent was evaporated in vacuo to afford red crystals of compound $\mathbf{1 7 b}$, which were triturated with ethanol and then collected by filtration (0.49 g). Total yield, $0.87 \mathrm{~g}(74 \%)$.

Compound 17b had mp 164-165 ; ir: $\mathrm{vcm}^{-1} 3400,3080,2960$, 1760, 1640; ms: m/z $361\left(\mathrm{M}^{+}\right), 363\left(\mathrm{M}^{+}+2\right)$; nmr (deuteriodimethyl sulfoxide): $\delta 9.43$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.38 ($\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.13\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 8.04(\mathrm{dd}, \mathrm{J}=9.0,2.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 4.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.07\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.58\left(\mathrm{tt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37(\mathrm{qt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $0.90\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}_{3}$: C, $53.12 ; \mathrm{H}, 4.46 ; \mathrm{N}, 19.36$. Found: C, 52.90; H, 4.38; N, 19.60.

A Mixture of 7-Chloro-1,5-dihydro-4-hydroxy-1-methylpyri-dazino[3,4-b]quinoxaline-3-carbo[2-(4-pyridylmethylene)]hydrazide (16) and Compound (14d).

A solution of compound $\mathbf{1 3 b}(1.5 \mathrm{~g}, 4.89$ mmoles $)$ and pyri-dine-4-carbaldehyde ($0.79 \mathrm{~g}, 7.34$ mmoles) in N, N-dimethylformamide (80 ml) was refluxed for 45 minutes. The solution was allowed to stand overnight at room temperature to precipitate greenish yellow crystals of a mixture of compound $\mathbf{1 6}$ and compound $\mathbf{1 4 d}$, which were collected by filtration and washed with ethanol (1.48 g); ir: $\mathrm{v} \mathrm{cm}^{-1} 3240$, 1690, 1620, ms: m/z 393, 395, nmr (deuteriotrifluoroacetic acid): δ [signals corresponding to
compound 16 (1,5-dihydro form), 32%] 8.51 (d, J = 7.0 Hz, pyridine $\mathrm{C}_{2}-\mathrm{H}$ and $\mathrm{C}_{6}-\mathrm{H}$), 8.30 (s, hydrazone CH), 8.18 (d, J = 7.0 Hz , pyridine $\mathrm{C}_{3}-\mathrm{H}$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 6.39\left(\mathrm{dd}, \mathrm{J}=2.0,8.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right)$, $6.26\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.25\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right), 3.51(\mathrm{~s}$, NCH_{3}); [signals corresponding to compound $\mathbf{1 4 d}$ (1,4-dihydro form), 68%] $8.52\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}\right.$, pyridine $\mathrm{C}_{2}-\mathrm{H}$ and $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.40$ (s, hydrazone CH), $8.28\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}\right.$, pyridine $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{C}_{5}-\mathrm{H}$), $8.08\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 8.00\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right), 7.82(\mathrm{dd}, \mathrm{J}$ $\left.=2.0,8.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 4.37\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$.

REFERENCES AND NOTES

[1] Y. Kurasawa, A. Tsuruoka, N. Rikiishi, N. Fujiwara, Y. Okamoto, and H. S. Kim, J. Heterocyclic Chem., 37, 791 (2000).
[2] Y. Kurasawa, K. Sakurai, S. Kajiwara, K. Harada, Y. Okamoto, and H. S. Kim, J. Heterocyclic Chem., 37, 1257 (2000).
[3] Y. Kurasawa, S. Ohshima, Y. Kishimoto, M. Ogura, Y. Okamoto, and H. S. Kim, Heterocycles, 54, 359 (2001).
[4] Y. Kurasawa, I. Matsuzaki, W. Satoh, Y. Okamoto, and H. S. Kim, Heterocycles, 56, 291 (2002).
[5] Y. Kurasawa, J. Takizawa, Y. Maesaki, A. Kawase, Y. Okamoto, and H. S. Kim, Heterocycles, 58, 359 (2002).
[6] Y. Kurasawa, W. Satoh, I. Matsuzaki, Y. Maesaki, Y. Okamoto, and H. S. Kim, J. Heterocyclic Chem., 40, 837 (2003).
[7] This type of compounds were clarified by us to exist as the 1,5-dihydropyridazino[3,4-b]quinoxaline form, but not the 1,4-dihy-dropyridazino[3,4-b]quinoxaline form, in solution and solid state [8], while dihydropyridazine [9] and dihydrocinnolines [10] were reported to predominate as the 1,4-dihydro form.
[8] Y. Kurasawa, A. Takano, K. Harada, A. Takada, H. S. Kim, and Y. Okamoto, Khim. Geterotsikl. Soedin., 9, 1245 (1995).
[9] J. Elguero, C. Marzin, A. R. Katritzky, and P. Linda, 'Advances in Heterocyclic Chemistry, Supplement 1, The Tautomerism of Heterocycles,' ed. by A. R. Katritzky and A. J. Boulton, Academic Press, New York, San Francisco, London, 1976, p. 78, and references cited therein.
[10] L. S. Besford, G. Allen, and J. M. Bruce, J. Chem. Soc., 1963, 2867.
[11] The synthesis of the 3-nitro derivative $\mathbf{1 0}$ will be reported elsewhere.
[12] The dehydrogenation of the 1,5-dihydro-4-hydroxy-3-carbohydrazide derivative $\mathbf{1 3 b}$ to the 1,4-dihydro-4-oxo-3-carboxazide derivative 8 would be due to autoxidation and/or oxidation with nitrous acid. Two molar nitrous acid is known to generate two molar nitrogen monoxide and one molar nascent oxygen and water.
[13] The addition of triethylamine provided good yields.

